Rota–Baxter operators on Clifford semigroups and the Yang–Baxter equation

نویسندگان

چکیده

In this paper, we introduce the theory of Rota-Baxter operators on Clifford semigroups, useful tools for obtaining dual weak braces, i.e., triples $\left(S,+,\circ\right)$ where $\left(S,+\right)$ and $\left(S,\circ\right)$ are semigroups such that $a\circ\left(b+c\right) = a\circ b - a +a\circ c$ $a\circ a^- -a+a$, all $a,b,c\in S$. To each algebraic structure is associated set-theoretic solution Yang-Baxter equation has behaviour near to bijectivity non-degeneracy. Drawing from provide methods constructing braces deepen some structural aspects, including notion ideal.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Translation-invariant Clifford Operators

This paper is concerned with quaternion-valued functions on the plane and operators which act on such functions. In particular, we investigate the space L(R,H) of square-integrable quaternion-valued functions on the plane and apply the recently developed Clifford-Fourier transform and associated convolution theorem to characterise the closed translation-invariant submodules of L(R,H) and its bo...

متن کامل

Stability of additive functional equation on discrete quantum semigroups

We construct  a noncommutative analog of additive functional equations on discrete quantum semigroups and show that this noncommutative functional equation has Hyers-Ulam stability on amenable discrete quantum semigroups. The discrete quantum semigroups that we consider in this paper are in the sense of van Daele, and the amenability is in the sense of Bèdos-Murphy-Tuset. Our main result genera...

متن کامل

Semigroups of Linear Operators

Our goal is to define exponentials of linear operators. We will try to construct etA as a linear operator, where A : D(A)→ X is a general linear operator, not necessarily bounded. Notationally, it seems like we are looking for a solution to μ̇(t) = Aμ(t), μ(0) = μ0, and we would like to write μ(t) = eμ0. It turns out that this will hold once we make sense of the terms. How can we construct etA w...

متن کامل

Clifford Homomorphisms and Higher Spin Dirac Operators

We present a generalization of the Clifford action for other representations spaces of Spin(n), which is called the Clifford homomorphism. Their properties extend to the ones for the higher spin Dirac operators on spin manifolds. In particular, we have general Bochner identities for them, and an eigenvalue estimate of a Laplace type operator on any associated bundle.

متن کامل

Kravchuk Polynomials and Induced/Reduced Operators on Clifford Algebras

Kravchuk polynomials arise as orthogonal polynomials with respect to the binomial distribution and have numerous applications in harmonic analysis, statistics, coding theory, and quantum probability. The relationship between Kravchuk polynomials and Clifford algebras is multifaceted. In this paper, Kravchuk polynomials are discovered as traces of conjugation operators in Clifford algebras, and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2023

ISSN: ['1090-266X', '0021-8693']

DOI: https://doi.org/10.1016/j.jalgebra.2023.02.013